
Tiling
Jeff Rowley

Abstract

This document will provide some basic code to construct two dimensional diagrams that
appear three dimensional for application to (mathematical) tiling problems.

Acknowledgements. Considerable credit must be given to Tim Murphy for the many illus-
trative examples he has made available on the internet. The diagrams created in this document
are adaptations of the code presented in his final example. Credit also to Alain Matthes for
his excellent LATEXpackage, tkz-euclide, which has been used to render the trigonometric
diagrams. Thanks also to Professor D.A. Preece1 for introducing the author to tredoku and
motivating the problem as a (mathematical) tiling problem.

1 Tredoku

Tredoku is essentially a game of sudoku played in three dimensions. Whereas sudoku is played on
a single square in two dimensions, tredoku is played over many squares that are arranged in three
dimensions. The rules of and procedures for solving the game are not considered herein; rather, the
arrangements of the major squares (or tiles) and any recurring patterns in runs of various lengths
is of interest. Producing diagrams of different arrangements in electronic format for inclusion in a
LATEXdocument is potentially tricky given that the problem is three dimensional but graphically
can only be represented in two dimensions. Without breaking down the problem into a series of
smaller problems, one could become quickly overwhelmed by the number of dimensions (each tile
consists of four vectors with different origins, and there are many tiles, each of which can be at
a different depth due to the three dimensions of arrangements). In the course of this document,
we consider the problem of graphically presenting tiling arrangements in as simple a manner as
possible.

2 Orientation
Before doing anything, we have to consider the orientation with which we wish to display our tiling
arrangement. Let us define O to be the origin. Supposing that the diagram is to be orientated
such that the y-axis is displayed along the (0,1)′ vector2 (that is, displayed vertically), we must
state the vectors along which the x-axis and z-axis are to lie.

O⃗y = (0,1)′

1Emeritus Professor of Mathematics at Queen Mary, University of London.
2The diagram itself is in two dimensional space so we must map (Euclidean) vectors in R3 space into R2 space

using some function, h.

1

http://timmurphy.org/2010/08/20/drawing-pictures-in-latex/
http://altermundus.com

2 Jeff Rowley

Let us think about some particular orientations.
The most extreme orientation is where the z-dimension is projected perpendicular onto the

xy-plane by the matrix P0, where P0 is defined below.

P0 = [
1 0 0
0 1 0

]

In this specific example the z-axis effectively ceases to exist in the diagram since we remove all
depth when we apply the projection matrix P0 to any coordinate vector (x, y, z)′.

O⃗x = (1,0)′

O⃗z = (0,0)′

The axes corresponding to this particular projection are shown in Figure 1.

O x

y

Figure 1: The orientation when the projection matrix P0 is applied. The z-dimension effectively
ceases to exist.

For regression type problems where we are effectively projecting from Rk+1 space onto Rk space
(for models with a scalar unobservable and k observable covariates) this is satisfactory. In the
context of the z-dimension being observable and containing some useful information, this is not
satisfactory at all. We must consider only those projections that are not perpendicular to the
xy-plane.

Consider instead some projection that makes the xz-plane and yz-plane visible as well as the
xy-plane. That is, suppose that we rotate the plane that we are projecting onto such that it is no
longer perpendicular to the xz-plane or the yz-plane. As an analogy, consider putting a Rubik’s
cube on the table. Looking at the Rubik’s cube at the level of the table, we see only the leading
face. This is the xy-plane as defined above. Now suppose that we turn the Rubik’s cube clockwise
a little. We can now see the right face of the Rubik’s cube, or yz-plane. Finally, suppose that we
tilt the Rubik’s cube forward a little. We can now see the top face of the Rubik’s cube, or xz-plane.
Notice that the same result could be achieved by altering the point of observation.3 Any point
on or in the cube will now appear as if it is in a different position. We must now calculate the
position of each point in R2 space when the Rubik’s cube is rotated and tilted, and projected
perpendicularly to the plane of observation.

A remark: both the rotation and tilt of the object occur along lines that intersect at the
origin, O. Let θ be the angle of (clockwise) rotation; let φ be the angle of tilt (forwards). As a
normalisation, both θ and φ are restricted to be less than a quarter turn. That is, θ, φ ∈ (0○,90○)
where angles are given in degrees for convenience. Define f ∶ R3 → R2 to be a function that maps
each point to its position on the projection. As the analogy shows, f can either be thought of as

3While a point of observation seems sensible in the analogy, a plane of observation (or projection) is more
technically correct for the application.

MRes Economics, Autumn 2012

Jeff Rowley 3

a single function or as a composite function. We will think of f as a composite function in which
rotation and tilt occur sequentially.

2.1 Rotation
What happens to an arbitrary vector, a = (a1, a2, a3)

′, when we rotate the axes? Clearly, rotating
the axes has no effect on the vertical position of any point in R3 space, either unprojected or on
the projection. In contrast, both the x-coordinate and z-coordinate of any point will change. As
the y-dimension is unaffected by the rotation, we restrict attention to the xz-plane.

Oa1

a3A

B

R

b1

b3

px

pz

Figure 2: Restricting attention to the xz-plane, an arbitrary point, A, with x-component a1 and z-
component a3 is rotated by θ degrees clockwise about the origin, O. This is the point B. Projected
onto the original axes, B has x-component px and z-component pz. The orange shaded angle is
the angle ω, defined below.

The relevant points that we wish to calculate in Figure 2 are px and pz. First, notice that if
we know the length OB and some angle between O and B then we can calculate px and pz. The
angle we use is deliberately left unspecified at this point since the diagram could alternatively be
drawn in any other quadrant or over two quadrants in which case we need to be careful which
angle we specify since the sign of the points is important. We will discuss the choice of angle in
greater detail in what follows.

OB is relatively straightforward to calculate, being the hypotenuse of AOa1, since A and B
lie on the circumference of a circle centred at O.

r ≡ OB = (a21 + a
2
3)

1
2 (2.1.1)

As r is a length, it is restricted to be positive. Hence, only positive roots are considered.
Adopting ω ≡ ∠Z+OB, which can be reflex, as our angle between O and B, we can derive

expressions for px and pz that will vary in sign according to the position of B.

px = r sin(ω) (2.1.2)
pz = r cos(ω) (2.1.3)

Thus, when B is in the negative-negative quadrant, px and pz are both negative, as is required.
All that remains is to develop a means of calculating the angle ω using the information available
to us.

ω =

⎧⎪⎪
⎨
⎪⎪⎩

θ + tan−1 (∣a3∣
∣a1∣) + 90○ × (

∣ sgn(a1)−sgn(a3)∣
2

+ 2 × 1[a1 < 0] + 1
2
× [a3 = 0]) if a1 ≠ 0,

θ + 180○ × 1[a3 < 0] if a1 = 0.
(2.1.4)

MRes Economics, Autumn 2012

4 Jeff Rowley

Having defined r in (2.1.1) and ω in (2.1.4), we have px and pz in terms of known quantities,
defined according to (2.1.2) and (2.1.3). Essentially, we have defined px and pz to be functions
that map θ, ax, az to R. For any vector A, there is a function g ∶ R3 → R3 that rotates A on the
xz-plane about the origin.

g(x, y, z; θ) ≡ (px(x, z; θ), y, pz(x, z; θ))
′

This completes our analysis of the effect of a horizontal rotation. We now switch our attention to
the effect of a vertical tilt on the direction and length of an arbitrary vector.

2.2 Tilt

Notice that a horizontal rotation is the same as tilting the object if the orientation of the problem
is changed. Hence, many of the results that we have obtained above are applicable. In this case, it
is the x-component of the vector that is unaffected by tilt. Attention can be restricted to the yz-
plane. Adapting Figure 2, the z-direction becomes the y-direction and the x-direction becomes
the z-direction in the diagram. Suppose that we tilt (forwards) an arbitrary vector, c = (c1, c2, c3)

′,
by φ degrees.

A remark: tilting a vector forwards should be thought of as an anticlockwise rotation on the
yz-plane (because the negative axis is closest to the point of observation). All results for the angle
φ in this section will be negative so that φ remains within the interval (0○,90○).

O c3

c2 C

D

S

d3

d2

qz

qy

Figure 3: Restricting attention to the yz-plane, an arbitrary point, C, with y-component c2 and
z-component c3 is tilted by φ degrees forwards about the origin, O. This is the point D. Projected
onto the original axes, D has y-component qy and z-component qz. The orange shaded angle is
the angle χ, defined below.

MRes Economics, Autumn 2012

Jeff Rowley 5

We have the following results. Again, calculating the length OD is straightforward.

s ≡ OD = (c22 + c
2
3)

1
2 (2.2.1)

As for r, s is also restricted to be positive.
Then, adapting (2.1.4) to the problem, we define the angle χ ≡ ∠Y +OD, shaded orange in

Figure 3.

χ =

⎧⎪⎪
⎨
⎪⎪⎩

−φ + tan−1 (∣c2∣∣c3∣) + 90○ × (
∣ sgn(c3)−sgn(c2)∣

2
+ 2 × 1[c3 < 0] + 1

2
× [c2 = 0]) if c3 ≠ 0,

−φ + 180○ × 1[c2 < 0] if c3 = 0.
(2.2.2)

Accordingly, from (2.2.1) and (2.2.2), we obtain (2.2.3) and (2.2.4).

qy = s cos(χ) (2.2.3)
qz = s sin(χ) (2.2.4)

Again, qy and qz are functions of φ, c2, c3 that can be combined to make the vector valued function
` ∶ R3 → R3.

`(x, y, z) ≡ (x, qy(y, z;φ), qz(y, z;φ))
′

This completes our analysis of the effect of tilt. We have defined functions g and ` that indepen-
dently map vectors to their new positions following rotation and tilt, respectively. We must now
investigate their combined effect.

2.3 Rotation and tilt
As previously stated, the function f is a composite function. In fact, it is f = ` ○ g. Suppose that
we have any vector (x, y, z)′ and assign particular values to θ and φ. Then,

f(x, y, z; θ, φ) = `(g(x, y, z; θ);φ)

= `(px(x, z; θ), y, pz(x, z; θ);φ)

= (px(x; θ), qy(y, pz(x, z; θ);φ), qz(y, pz(z; θ);φ))
′

is the original vector having been rotated and tilted. But then recall from the initial discussion
that we must apply the projection matrix P0 to this vector such that we map the vector from R3

space to R2 space.
P0f(x, y, z; θ, φ) = (px(x; θ), qy(y, pz(x, z; θ);φ))

′ (2.3.1)

We can now use (2.3.1) to calculate the vectors along which the axes must lie. This is somewhat
trivial since the axes originally lie on mutually orthogonal unit vectors. Let x1,y1,z1 be the
directional vectors of the axes in R2 space following the change of orientation. The procedure for
computing x1 will be shown in detail with results for y1 and z1 given.

Let us calculate x1. We know that the x-axis originally lies on the vector (1,0,0)′. As such,
r = 1 and ω = θ + 90○ so we have that

px = sin(θ + 90○) > 0 and
pz = cos(θ + 90○) < 0,

meaning that s = ∣ cos(θ + 90○)∣ and χ = −φ + 270○. Since we are projecting perpendicular to the
original xy-plane, the z-component of the rotated and tilted vector is irrelevant.

qy = ∣ cos(θ + 90○)∣ × cos(−φ + 270○)

Hence, x1 lies on the vector (sin(θ + 90○), ∣ cos(θ + 90○)∣ × cos(−φ + 270○))′.

(x1,y1,z1) = [
sin(θ + 90○) 0 sin(θ)

∣ cos(θ + 90○)∣ × cos(−φ + 270○) cos(−φ) ∣ cos(θ)∣ × cos(−φ + 90○)] (2.3.2)

The orientation of the axes after the change of orientation are shown in Figure 4, below.

MRes Economics, Autumn 2012

6 Jeff Rowley

O

x1

y1

z1

Figure 4: The orientation of the axes after rotation and tilt when projected from R3 space to R2

space for θ = φ = 45○.

3 Breaking down the problem
We return now to the crux of the problem: drawing tiles in LATEX. As touched upon, drawing
a single tile can be tricky enough, let alone drawing many tiles. We need to devise a means of
breaking down the problem such that the addition of an extra tile amounts to an additional line
of code, rather than many lines. To illustrate this point using the tkz-euclide package, suppose
that we draw a simple unit square.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(1,0){B}
\tkzDefPoint(1,1){C}
\tkzDefPoint(0,1){D}
\tkzDrawSegments(A,B B,C C,D D,A)
\end{tikzpicture}

Despite the simplicity of the problem, we have had to define the coordinates of each of the four
points and instruct the package to draw lines joining each of the points. Furthermore, we have
had to input the exact coordinates of the four points. When the expressions determining these
points are more complicated, manually computing each of these points is impractical.

Rather than attack the problem of drawing multiple tiles straight away we will consider ways
to simplify the problem of drawing the unit square. The methods we develop to tackle this simple
problem can then be adapted and applied to the tiling problem.

3.1 A simple problem

If we want to draw multiple unit squares at different points in R2 space, following the template
above, will require that we write five additional lines for each unit square and compute four
different points. However, each unit square shares a common feature. Namely, that the points
B,C,D and their counterparts in other squares can be expressed as shifts from the point A.

\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefShiftPoint[A](1,0){B}
\tkzDefShiftPoint[A](1,1){C}
\tkzDefShiftPoint[A](0,1){D}
\tkzDrawSegments(A,B B,C C,D D,A)
\end{tikzpicture}

MRes Economics, Autumn 2012

Jeff Rowley 7

Although there are still five additional lines for each unit square we now only need to compute
the location of one of the points, A in this example. Since A,B,C,D are generic labels for our
points we could move to a more sensible labelling convention. For example, let a be our absolute
point and a1, a2, a3 be the relative points defined in terms of a. Our code now looks as though it
could be repetitive: defining a sequence of absolute points a, b, c, ... all other lines of code follow a
common structure.

\begin{tikzpicture}
\tkzDefPoint(0,0){a}
\tkzDefShiftPoint[a](1,0){a_1}
\tkzDefShiftPoint[a](1,1){a_2}
\tkzDefShiftPoint[a](0,1){a_3}
\tkzDrawSegments(a,a_1 a_1,a_2 a_2,a_3 a_3,a)

\tkzDefPoint(2,2){b}
\tkzDefShiftPoint[b](1,0){b_1}
\tkzDefShiftPoint[b](1,1){b_2}
\tkzDefShiftPoint[b](0,1){b_3}
\tkzDrawSegments(b,b_1 b_1,b_2 b_2,b_3 b_3,b)
\end{tikzpicture}

As written, the only differences between the code for the unit square with absolute point a and
the unit square with absolute point b are the labels a, b and the Cartesian coordinates of a, b.

Macros are incredibly useful tools that can be used to simplify repetitive tasks in which only
the values of a small number of arguments vary. Here we could develop a macro that takes a
point, say a, as its argument and then draws a unit square. Let us call this macro unitsquare.

\newcommand{\unitsquare}[1]{
\tkzDefShiftPoint[#1](1,0){#1_1}
\tkzDefShiftPoint[#1](1,1){#1_2}
\tkzDefShiftPoint[#1](0,1){#1_3}
\tkzDrawSegments(#1,#1_1 #1_1,#1_2 #1_2,#1_3 #1_3,#1)
}

Then the ten lines of code required to draw a unit square at (0,0) and another at (2,2) reduces
to just four lines of code. Only the Cartesian coordinates of a and b need be calculated.

\begin{tikzpicture}
\tkzDefPoint(0,0){a}
\tkzDefPoint(2,2){b}
\unitsquare{a}
\unitsquare{b}
\end{tikzpicture}

In summary, we have noticed that the unit square has a common structure. That is, the length
and direction of the vector joining any two points on the same unit square is common to all unit
squares. All that changes across unit squares is the location of the square. This is the same as
the location of any one point being different across unit squares. With this knowledge to hand,
we built a macro that drew a unit square given a specified south-west corner.

3.2 Repetition in the tiling problem
If we can find common features across tiles then the problem of drawing multiple tiles will be
considerably simpler. Notice that there are only three types of tiles. Returning to the example of
the Rubik’s cube, each face of the cube has a parallel face. For example, the leading face is parallel

MRes Economics, Autumn 2012

8 Jeff Rowley

to the face at the back, differing only in how far away the face is from us. We refer to the three
types of tiles as xy, xz or yz tiles. Each type of tile is orthogonal to one of the axes; namely, each
tile is orthogonal to the axis of the direction omitted from their name. Note that the location of
any two tiles of the same type can differ in any direction.

Given three types of tiles, each with a common structure, we could theoretically build three
macros that simplify the task of placing tiles. In fact, the macros will look very similar to the
unitsquare macro that we built above.

Let us think about each type of tile in R3 space before we change the orientation of the space.
Without loss of generality, let us consider a xy tile. Call A the south-west corner of the tile. Then
the south-east corner of the tile is simply A + (1,0,0)′; the north-east corner of the tile is simply
A + (1,1,0)′; the north-west corner of the tile is simply A + (0,1,0)′. Notice that the north-east
corner can alternatively be expressed as A+(1,0,0)′ +(0,1,0)′. We can derive similar expressions
for the four corners of xz and yz tiles.

Changing the orientation of the space and projecting onto R2 space would appear, at first
glance, to create some difficulty. However, notice that we have already computed the unit vectors
for our projection when we calculated the vectors along which the axes lie, (2.3.2). The problem
reduces to building the three macros and calculating a sequence of absolute points from which to
plot our tiling arrangement.

Throughout this section we will set θ = 45○ and φ = 35.26439○. This is in order for the angles
between each of the axes, as they appear on paper, to be 60○. For further simplicity, assume
that tiles are restricted to lie on a Cartesian grid. This will restrict the location of tiles and,
conveniently, means that any point can be reached from the origin using just the unit vectors,
(2.3.2).

First, we need to compute the values of (2.3.2) given our choice of θ, φ.

[
0.7071068 0.0000000 0.7071068
−0.4082483 0.8164966 0.4082483

] (3.2.1)

Now with these values, we can build the macros that we will rely on to construct any tiling
arrangement of our choice.

%xy tile
\newcommand{\xytile}[1]{
\tkzDefShiftPoint[#1](0.70710678,-0.4082483){#1_1}
\tkzDefShiftPoint[#1_1](0,0.8164966){#1_2}
\tkzDefShiftPoint[#1](0,0.8164966){#1_3}
\tkzDrawSegments(#1,#1_1 #1_1,#1_2 #1_2,#1_3 #1_3,#1)
\tkzFillPolygon[color=gray!30](#1,#1_1,#1_2,#1_3)
}

%xz tile
\newcommand{\xztile}[1]{
\tkzDefShiftPoint[#1](0.70710678,-0.4082483){#1_1}
\tkzDefShiftPoint[#1_1](0.7071068,0.4082483){#1_2}
\tkzDefShiftPoint[#1](0.7071068,0.4082483){#1_3}
\tkzDrawSegments(#1,#1_1 #1_1,#1_2 #1_2,#1_3 #1_3,#1)
\tkzFillPolygon[color=gray!30](#1,#1_1,#1_2,#1_3)
}

%yz tile
\newcommand{\yztile}[1]{
\tkzDefShiftPoint[#1](0.7071068,0.4082483){#1_1}
\tkzDefShiftPoint[#1_1](0,0.8164966){#1_2}

MRes Economics, Autumn 2012

Jeff Rowley 9

\tkzDefShiftPoint[#1](0,0.8164966){#1_3}
\tkzDrawSegments(#1,#1_1 #1_1,#1_2 #1_2,#1_3 #1_3,#1)
\tkzFillPolygon[color=gray!30](#1,#1_1,#1_2,#1_3)
}

The tkzFillPolygon command is included so that tiles are shaded grey. It is not strictly necessary
but is included for aesthetic purposes.

Suppose that we wish to construct the following arrangement, Figure 5.

Figure 5: A tredoku puzzle found using a Google search, keyword: tredoku.

The code to replicate this arrangement is given below. Note that the lines before the first linebreak
and after the second linebreak are necessary to draw in the axes and do not form part of the
problem per se.

\begin{tikzpicture}
\tkzInit
\tkzDefPoint(0,0){O}
\tkzDefPoint(2.828427,-1.632993){x}
\tkzDefPoint(0,3.265986){y}
\tkzDefPoint(2.828427,1.632993){z}
\tkzDefPointBy[symmetry= center O](x) \tkzGetPoint{x_1}
\tkzDefPointBy[symmetry= center O](y) \tkzGetPoint{y_1}
\tkzDefPointBy[symmetry= center O](z) \tkzGetPoint{z_1}

\tkzSetUpLine[color=orange]
\tkzDefPoint(0,0.8164966){A}
\tkzDefPoint(0,1.632993){B}
\tkzDefPoint(0.7071068,-0.4082483){C}
\xytile{O}
\xytile{A}
\xytile{B}
\xytile{C}
\tkzDefPoint(0.7071068,0.4082483){D}

MRes Economics, Autumn 2012

https://www.google.co.uk/

10 Jeff Rowley

\tkzDefPoint(1.4142136,0.8164966){E}
\tkzDefPoint(2.1213204,0.4082483){F}
\xztile{D}
\xztile{E}
\xztile{F}
\tkzDefPoint(1.4142136,-0.8164966){G}
\yztile{D}
\yztile{E}
\yztile{G}

\tkzSetUpLine[color=black]
\tkzDrawSegments[delta=10](x,O y,O z,O)
\tkzSetUpLine[color=gray]
\tkzDrawSegments[delta=10](x_1,O y_1,O z_1,O)
\tkzLabelPoints(O,x,y,z)
\end{tikzpicture}

The code produces the graphic in Figure 6. This is identical to the tiling arrangement in the
tredoku puzzle we sought to replicate. Particularly pleasing is the fact that all of the absolute
points could be found within a minute simply by working out the coordinates of the south-west
corners of each tile in R3 and premultiplying this coordinate vector by the matrix (3.2.1) using
any statistical software package.

O

x

y

z

Figure 6: The tredoku puzzle in Figure 5 is replicated using the macros and tools built and
derived above.

MRes Economics, Autumn 2012

	Tredoku
	Orientation
	Rotation
	Tilt
	Rotation and tilt

	Breaking down the problem
	A simple problem
	Repetition in the tiling problem

